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Received 15 September 1997

Abstract. The 2D system of electrons confined to the lowest Landau level is described
using a representation with a density matrix depending both on electron and hole coordinates.
Condensation of the electron system into a fractional quantum Hall state is associated with
clustering of particle and hole coordinates. The correlation of particle and hole coordinates is
studied and ground-state wave functions are derived forν = p/(2p± 1). These wave functions
prove to be accurate for the cases studied, i.e. forν = 2/3 and 3/5, and are identical topair
wave functions (Morf R, d’Ambrumenil N and Halperin B I 1986 Phys. Rev.B 34 3037) for
ν = 2/3 and 2/5.

The theory of Laughlin [1] provides a good microscopic description of theν = 1/m
incompressible quantum Hall states, withm odd. On the basis of this description, it has
been proposed that one could identify fractional quantum Hall states by the occurrence of
the binding of flux quanta to electrons [2]. An explicit formulation for such a binding is
provided by the composite-fermion approach [3, 4], which makes use of a singular gauge
transformation to map the system of electrons in the presence of a magnetic field onto a
system of composite fermions, which are objects each composed of an electron bound to
an even number of flux quanta.

In this article, an alternative formulation is presented for treating the binding of flux
quanta to electrons. This approach makes use of a particular representation of the finite-
temperature density matrix for the electron system confined to the lowest Landau level, and
consists in the evaluation of matrix elements of the density matrix operator connecting states
parametrized by electron coordinates and states parametrized by the coordinates of electron
vacancies, i.e. holes. The latter coordinates can be regarded as positions of flux quanta.

This formulation, in which electron–hole symmetry is fully explicit, leads to a simple
and natural picture for the incompressible quantum Hall state atν = p/q: at some finite
temperature, the density matrix is large only for configurations in which electron and
hole coordinates can be grouped into clusters each containingp electron coordinates and
q − p hole coordinates. This electron–hole binding results dynamically from the repulsion
between electrons. The creation of a neutral excitation corresponds to the breaking of such
a cluster into two smaller clusters, each one leading to a local fractional-charge defect. The
fact that this breaking requires a finite amount of potential energy leads to a gap in the
energy spectrum and to incompressibility. The off-diagonal long-range order characterizing
incompressible ground states [5] results from the fact that these clusters are bosons and they
Bose condense.

The advantage of working with this finite-temperature description is that the correlation
between hole coordinates, which play the role of positions of flux quanta, and electron
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coordinates can be written down explicitly. However, the price to pay is the work
necessary to derive from this density matrix a microscopic description of the system at
zero temperature. We show how to obtain ground-state wave functions either as a function
of electron coordinates or as a function of hole coordinates in the case of the fractional
quantum Hall states atν = p/(2p+ 1). The point is made that the wave functions derived
from this density matrix are generalizations of the pair wave functions of reference [6],
which are known to be accurate. In the latter wave functions, the pairing of electrons can
be regarded as resulting directly from the presence in the density matrix of clusters each
containingp = 2 electrons andq − p holes.

This description of fractional quantum Hall states based on a density matrix is in fact
analogous to the one provided by the composite-fermion approach [3, 4]. Indeed, a cluster
made up of one electron and one hole corresponds to a composite fermion, and a cluster made
up of p electrons andp+ 1 holes, which enters into the description of theν = p/(2p+ 1)
state, corresponds top composite fermions, each one belonging to a different Landau level,
all bound to a flux quantum of the field experienced by composite fermions.

Let us first study the density matrix of the 2D electron gas confined to the lowest Landau
level at a filling factorν = p/q characterized by the presence of an incompressible ground
state. More specifically, we consider the quantity

ρβ(w1, . . . , whN, z1, . . . , zpN) = 〈w1, . . . , whN |e−βṼ |z1, . . . , zpN 〉 (1)

where Ṽ is the electron–electron interaction projected onto the lowest Landau level
and where|z1, . . . , zpN 〉 and |w1, . . . , whN 〉 are states respectively given in the electron
representation and the hole representation, defined by

|z1, . . . , zpN 〉 = c†(z1) · · · c†(zpN)|0〉 (2)

|w1, . . . , whN 〉 = c(w1) · · · c(whN)|1〉 (3)

where|0〉 and |1〉 respectively denote the empty- and full-Landau-level states,c†(z) is the
operator creating an electron in a coherent state [7] centred at positionz andh is given by
h = q−p, and wherepN andhN are respectively the number of electrons and the number
of holes in the lowest Landau level.

For β = 0, the density matrix of equation (1) is simply given by

ρ0 =
hN∏
j1<j2

(wj1 − wj2)

pN∏
i1<i2

(zi1 − zi2)
hN∏
j=1

pN∏
i=1

(zi − wj)
hN∏
j=1

e−|wj |
2/4

pN∏
i=1

e−|zi |
2/4 (4)

in units of the magnetic length, wherezi andwj are respectively the complex coordinates
of electroni and holej . Ignoring for a moment the distinction between the variableszi and
wj , we see thatρ0 has a functional form identical to that of the wave function describing
a full Landau level. Thus configurations(w1, . . . , whN, z1, . . . , zpN) characterized by
non-negligible values ofρ0 have the feature (denoted by (A)) that their coordinates are
homogeneously distributed over the whole sample. Let us now study the effect of the
electron–electron repulsion present in equation (1). In the case of a repulsion characterized
by vanishing pseudopotential coefficients [8] for even values of the electron–electron relative
angular momentum, the Hamiltonian matrix is given, up to an additive constant, by

− ∂ρ
∂β

∣∣∣∣
β=0

(w1, . . . , whN, z1, . . . , zpN)

= −
pN∑
i=1

hN∑
j=1

∑
L

ṼL

∫
d2ξ

[
P
ψ
(ξ)

L (ziwj )
ρ0

]
(w1, . . . , whN, z1, . . . , zpN) (5)
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where the summation overL is carried out over odd positive integers, theṼL denote the
pseudopotential coefficients andψ(ξ)

L (z1z2) is the wave function describing two particles
with relative angular momentumL, and with the centre of mass in a coherent state centred
at positionξ ; alsoP is the projector associated with this wave function, defined by[
P
ψ
(ξ)

L (ziwj )
ρ0

]
(w1, . . . , whN, z1, . . . , zpN) = ψ(ξ)

L (ziwj )

×
∫

d2z′i d2w′j ψ
(ξ)

L

∗
(z′iw

′
j )ρ0(w1, . . . , w

′
j , . . . , whN, z1, . . . , z

′
i , . . . , zpN).

(6)

As can be seen in equation (5), the effect of the interaction at finite values ofβ is to increase
ρβ for configurations which have the feature (denoted by (B)) that their coordinateswj are
close to their coordinateszi . Thus it is likely that the quantityρβ for small but finiteβ
will be largest for configurations(w1, . . . , whN, z1, . . . , zpN) in the 2D plane which can be
divided into compact clusters of equal sizes each containingp positionszi andh positions
wj , which possess both feature (A) and feature (B).

Let us now construct a form for the density matrix satisfying the latter requirement for
the special case of the filling fractionsν = p/(2p + 1). The question of the temperature
range over which this form is valid will be discussed latter. We propose to use the function
given byκ(w1, . . . , whN, z1, . . . , zpN) = AwAzκ̂(w1, . . . , whN, z1, . . . , zpN) and by

κ̂ =
∫ N∏

n=1

[
d2ξn Pχ(ξn)(zp(n−1)+1,...,zpn,wh(n−1)+1,...,whn)

]
ρ0 (7)

whereAw andAz are antisymmetrization operators acting respectively on sets of variables
(w1, . . . , whN) and(z1, . . . , zpN) and whereχ(ξn) is a function describing the correlation of
p electrons andh = p + 1 holes in a cluster centred at positionξn, given by

χ(ξ)(z1, . . . , zp, w1, . . . , wh) =
p∏

i1<i2

(zi1 − zi2)
h∏

j1<j2

(wj1 − wj2)
3

×
p∏
i=1

exp

(
ξ ∗zi

2
− |zi |

2+ |ξ |2
4

) h∏
j=1

exp

(
ξ ∗wj

2
− |wj |

2+ |ξ |2
4

)
. (8)

The projectors and the termρ0 in equation (7) respectively ensure that configurations leading
to a large value ofκ have features (B) and (A). The integrals implicit in the projectors of
equation (7) can be evaluated using the identity∫ n∏

i=1

[
d2zi exp

(
−|zi |

2+ ξz∗i
2

)]
P ∗k (z1, . . . , zn)Ql(z1, . . . , zn)f (z1, . . . , zn)

= f (ξ, . . . , ξ)
∫ n∏

i=1

[
d2zi e−|zi |

2/2
]
P ∗k (z1, . . . , zn)Ql(z1, . . . , zn) (9)

where f is a polynomial, and wherePk andQl are homogeneous polynomials of total
degreek and l with k 6 l and are invariant under global translations of their variables [9].
This leads, up to a multiplicative constant, to

κ̂ =
∫ N∏

n=1

[
d2ξn χ

(ξn)(zp(n−1)+1, . . . , zpn, wh(n−1)+1, . . . , whn)
]

×
N∏

n1<n2

(ξn1 − ξn2)
q2

N∏
n=1

e−q|ξn|
2/4. (10)
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The functionχ is chosen so as to satisfy the following criteria.

(a) χ(ξ) is antisymmetric under interchange of two electron coordinates or under inter-
change of two hole coordinates.

(b) The total degree of the polynomial part ofχ(0) equalsq(q − 1)/2. Indeed, in the
light of equation (9),κ would vanish for a smaller degree. On the other hand, a larger
degree would lead [9] to a reduction of the power of the factorsξn1 − ξn2 in equation (10),
and configurations with a large value ofκ would not satisfy condition (A) any longer.

(c) Factors of the typezi − wj are absent, soχ is large for configurations satisfying
condition (B).

In order to support our claim that the functionκ provides a realistic description of the
density matrix for some temperature, we now make the case that the ground-state wave
functions derived from this form for the density matrix are generalizations of the pair wave
functions of reference [6], which are known to be accurate. Let us denote by8(z1, . . . , zpN)

and2(w1, . . . , whN) the wave functions describing the ground state atν = p/(2p + 1) in
the electron and hole representations of equations (2) and (3), respectively. Ifκ provides a
good description of the density matrix, then8 and2 should maximize the quantity

R(8,2) =
(∫

d2pNZ d2hNW κ∗(W,Z)8(Z)2(W)
)

×
(√∫

d2pNZ |8(Z)|2
∫

d2hNW |2(W)|2
)−1

(11)

whereZ ≡ (z1, . . . , zpN) andW ≡ (w1, . . . , whN).
We now approximateR(8,2) by substitutingκ̂ for κ in equation (11). Ignoring for

the moment the constraint of antisymmetrization, we consider wave functions of the type

8̂(z1, . . . , zpN) =
pN∏
i=1

e−|zi |
2/4

N∏
n=1

ala (z(n−1)p+1, . . . , znp)

×
N∏

n1<n2

blb (z(n1−1)p+1, . . . , zn1p, z(n2−1)p+1, . . . , zn2p) (12)

whereala andblb are translationally invariant and homogeneous polynomials of total degree
la and lb to be determined. The polynomial

ala (z(n−1)p+1, . . . , znp)

describes correlations within the groupn of variablesz(n−1)p+1, . . . , znp. The polynomial

blb (z(n1−1)p+1, . . . , zn1p, z(n2−1)p+1, . . . , zn2p)

is built up using products oflb factors of the type(z(n1−1)p+i1 − z(n2−1)p+i2), with i1, i2 =
1, . . . , p, and describes correlations between groupsn1 andn2. We write similarly

2̂(w1, . . . , whN) =
hN∏
j=1

e−|wj |
2/4

N∏
n=1

clc (w(n−1)h+1, . . . , wnh)

×
N∏

n1<n2

dld (w(n1−1)h+1, . . . , wn1h, w(n2−1)h+1, . . . , wn2h). (13)

We now introduce equations (10), (12) and (13) into equation (11), and integrate over
coordinateszi andwj before integrating over coordinatesξn in the numerator. In order to
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maximize the numerator, we demand that the results of the integration over the electron and
hole coordinates have the same dependence on the variablesξn as the kernel of̂κ given by
the last two terms of equation (10). Using equation (9), it can be seen by inspection [9]
that this is possible only whenla and lc are equal to the degrees of the polynomial parts
of equation (8), depending respectively on coordinateszi andwj , i.e. la = p(p − 1)/2 and
lc = 3h(h − 1)/2, and thatlb + ld = q2. The latter condition, together with the constraint
that each coordinate in̂8 or in 2̂ haveqN − 1 zeros, leads tolb = pq andld = hq. In the
light of equations (9) and (8), it is judicious to choose

ala (z1, . . . , zp) =
p∏

i1<i2

(zi1 − zi2) (14)

clc (w1, . . . , wh) =
h∏

j1<j2

(wj1 − wj2)
3 (15)

in order to obtain a large result from integration over the particle and hole coordinates in the
numerator of equation (11). Among the polynomialsbpq anddhq leading to the same value
for the numerator, those yielding the most homogeneous distribution of factorszi1−zi2 over
pairs 16 i1 < i2 6 pN and of factorswj1 − wj2 over pairs 16 j1 < j2 6 hN lead to the
smallest denominator. We therefore choose

bpq(z1, . . . , z2p) =
p∏
i1=1

p∏
i2=1

(zi1 − zp+i2)2
∑
Pp

p∏
i=1

(zPi − zp+i ) (16)

and

dhq(w1, . . . , w2h) =
h∏

j1=1

h∏
j2=1

(wj1 − wh+j2)
2
∑
Ph

h∏
j=1

(wPj − wh+j )−1 (17)

wherePp andPh respectively denote sums over permutations ofp andh objects.
The wave functions8 = Az8̂ and 2 = Aw2̂ defined using equations (12), (13),

(14), (15), (16) and (17) are identical to the pair wave functions of reference [6] when
p = 2 andh = 2, respectively.8 and2 provide a good microscopic description of the
ground states at filling factorsν = p/(2p + 1) andν = h/(2h − 1), respectively. Indeed,
they lead to numbers of flux quanta which are in agreement with the prescription of the
hierarchical scheme [8] and have a large overlap with the exact ground states of the corres-
ponding systems of particles on a sphere in the presence of Coulomb repulsion: in the case
where ν = 2/3, and for eight and ten particles respectively, the overlaps are 0.954 and
0.930, whereas the numbers ofL = 0 states are two and six. In the case whereν = 3/5,
and for six and nine particles respectively, the overlaps are 0.988 and 0.970 and the numbers
of L = 0 states are three and eight.

We now study the constraints imposed by statistics on the allowed values of the para-
metersp, h andq = p + h, using a path integral representation of the partition function

Z(β) =
∫

d2z1 · · ·d2zpN 〈z1, . . . , zpN |e−βṼ |z1, . . . , zpN 〉. (18)

The exponential in equation (18) is broken intoM pieces, exp(−βṼ /M), with M even,
and the projectors

|z(m)1 , . . . , z
(m)
pN 〉〈z(m)1 , . . . , z

(m)
pN | and |w(m)1 , . . . , w

(m)
hN 〉〈w(m)1 , . . . , w

(m)
hN |

are inserted alternatively at imaginary timesmβ/M for m even andm odd, respectively. We
consider configurations which can be divided at all imaginary times in clusters containing



806 P Béran

p coordinatesz(m)i and h coordinatesw(m)j , which significantly contribute to the partition

function. For simplicity we further demand thatz(m)i andw(m)j have a smooth dependence
onm, and belong to the same cluster throughout imaginary time. The phase corresponding
to a given path is a product of phase contributions associated with each time step, which
can in turn be evaluated by means of equation (4). Ignoring the factorszi − wj for zi and
wj belonging to the same cluster, this leads to(−1)ph[P ] , where [P ] is the parity of the
permutation taking place among the clusters between the imaginary timeτ = 0 andτ = β.
Thus such paths contribute constructively to the partition function only ifph is even—that
is, if (a) p is even andh is odd or (b)p is odd andh is even or (c) bothp andh are even.
Note that cases (a) and (b) imply a filling factor ofν = p/q with an odd denominator.

The fact that all of the incompressible fractional quantum Hall states observed in the
lowest Landau level are characterized by a filling factor with an odd denominator may be
attributed to the fact that a stable cluster made up ofp electron coordinates andh hole
coordinates can only be obtained if one of the parameters is odd, thus corresponding to
case (a) or case (b). Indeed, forp and q both even, the paths obtained by clusteringp
coordinateszi and h coordinateswj could be energetically unfavourable compared with
paths obtained by clusteringp/2 coordinateszi andh/2 coordinateswj .

The incompressible state atν = 5/2 is characterized byp = h = 2 (case (c)). The
absence of an incompressible state atν = 1/2 is attributed [10] to the fact that, in the lowest
Landau level, clusters withp = h = 2 are unstable toward the formation of clusters with
p = h = 1. Since the paths of suchp = h = 1 clusters contribute to the partition function
with a phase(−1)[P ] reminiscent of that of fermions, they can be regarded as composite
fermions [4].

It is important to note that the approximation to the density matrix provided by the
function κ of equation (10) is unable to describe neutral excitations consisting in pairs of
well-separated fractionally charged excitations. Indeed, when using this approximate form
of the density matrix to evaluate the number of electrons in a surface large compared to
the squared magnetic length, one obtains fluctuations much too small to include the effect
of such excitations. In order to include the effect of a single quasiparticle–quasihole pair,
it is necessary to add toκ a further term. This additional term can be obtained from the
right-hand side of equation (7) by replacing one of the projectors associated with clusters
of p electrons andh holes by two projectors: one associated with a cluster ofp′ electrons
andh′ holes and another associated with a cluster ofp−p′ electrons andh−h′ holes, with
p′ andh′ satisfyingp′h − ph′ = ±1. The cluster associated with the plus sign leads to a
local charge defecte/q (a quasiparticle) and the other to−e/q (quasihole), wheree is the
electron’s charge. The parametersp′ andh′ are given by

p′/h′ = 1/(n1+ 1/(n2+ · · · + 1/nk−1)) · · ·))
in terms of the continued-fraction decomposition

p/h = 1/(n1+ 1/(n2+ · · · + 1/nk)) · · ·)).
Thus the creation of a neutral excitation corresponds to the breaking of a cluster ofp

electrons andh holes. The fact that this breaking requires a finite amount of potential energy,
together with the fact thatκ from equation (7) considered as a function ofz1, . . . , zpN or of
w1, . . . , whN has a small overlap with the contribution described above including a neutral
excitation, leads to a gap in the energy spectrum and to incompressibility.

We finally address the question of the temperature range in which the function
κ(w1, . . . , whN, z1, . . . , zpN) of equation (7) may be adequate for describing the density
matrix of equation (1). Althoughκ is unable to describe neutral excitations consisting in
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pairs of well-separated elementary excitations which are associated with short-wavelength
collective modes [11], we do believe that the effects of long-wavelength collective modes
are included inκ(w1, . . . , whN, z1, . . . , zpN) and are responsible for the correlations existing
between the variableszi and wj . These collective modes are characterized by a finite
excitation energyεk=0. We thus conjecture that the temperature for whichκ is adequate for
describing the density matrix is of the order ofεk=0/kB .
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